Primary Miscible / Near-Miscible Flooding, and CO2
Sequestration
Also see the example optimization
problem and solution given at
Generalized Automatic Global Predictive Optimization,
determining the optimal production strategy for SPE5. The optimal producing
bhp for gas flooding in the optimal producing strategy (3755.3 psia) is just
below the first-contact miscible pressure (3874.8), and demonstrates that
the given lab MMP (3000) is meaningless in the reservoir, and that
"miscible flood" models assuming a fixed miscibility pressure do not apply
in general. That example also demonstrates the non-existence of any
competent AI/ML method in engineering for design, optimization, or
forecasting.
The high oil recovery of about 80%
obtained in the 20-year SPE51 WAG
(water-alternating-gas) flood illustrates the very high recovery potential
of miscible or near-miscible gas flooding as a primary recovery method.
Recovery by miscible flooding is limited only by sweep efficiency.
Fully miscible flooding of an oil by a solvent is possible at pressures
higher than the highest saturation pressure or critical point pressure found
along the closed oil-solvent mixture phase diagram, called the
first-contact-miscible (FCM) pressure. The requirement "closed" means
that either a dewpoint, bubblepoint, or the critical point can be found
(exists) for any given mixture. Light oils usually have closed
oil-solvent phase diagrams for many possible solvents. Sensor
automatically prints out phase diagrams for the initially specified oil and
a number of default and optionally specified solvent compositions. CO2
usually makes the best solvent, rather than any produced surface gas.
Near-miscible levels of recovery may be obtained when the producer operates
in the immiscible region somewhat below the FCM pressure, because miscible
conditions exist along most of the displacement front. But multiple-contact
miscibility as observed in laboratory slimtube tests is generally not
achieved in the reservoir due to multiphase flow, gravity, and
heterogeneity, which cause mixing that prevents it.
Depletion of an
oil reservoir destroys the possibility of uniform and high sweep efficiency
in flooding. Primary miscible flooding, where applicable, makes "primary" and "secondary" techniques
(depletion and waterflooding) unnecessary and very
costly. Spe5 makes a good example:
Spe5 is a 20 year
compositional PRIMARY wag flood of an initially undersaturated oil,
with bhp control of 4500 for the injector and 3000 for the producer. The
solvent/oil phase diagram output by Sensor shows that the FCM pressure is
3874.8 psi for the specified injectant (solvent). Recovery after 20 years of
flooding is 79.3% oil, 12.8% gas. Below is the phase diagram printed in the
Sensor output file for the solvent (injected gas)/oil system: The FCM
pressure is the highest psat in the closed phase diagram (3874.8 psi).
The Sensor data file is spe5.dat.
INJECTANT = ENTERED INJECTANT No. 1 (entered
under P-Z keyword)
RESERVOIR
FLUID INJECTANT
---------------------------------
1 C1 0.500000
0.770000
2 C3 0.300000E-01
0.200000
3 C6 0.700000E-01
0.300000E-01
4 C10 0.200000 0.00000
5 C15 0.150000 0.00000
6 C20 0.500000E-01 0.00000
Z PSAT TYPE
TENSION DXY DENO DENG
--------------------------------------------------------------------
0.0000 2302.9 BUB PT
2.3187 0.47470 33.775 6.9619
0.0200 2342.3 BUB PT
2.2203 0.46726 33.677 7.1253
0.0400 2382.1 BUB PT
2.1231 0.45978 33.576 7.2925
0.0600 2422.3 BUB PT
2.0269 0.45226 33.472 7.4636
0.0800 2462.9 BUB PT
1.9321 0.44470 33.366 7.6386
0.1000 2503.9 BUB PT
1.8385 0.43708 33.256 7.8178
0.1200 2545.4 BUB PT
1.7464 0.42941 33.143 8.0013
0.1400 2587.2 BUB PT
1.6557 0.42169 33.027 8.1892
0.1600 2629.5 BUB PT
1.5665 0.41390 32.907 8.3818
0.1800 2672.1 BUB PT
1.4790 0.40605 32.783 8.5792
0.2000 2715.2 BUB PT
1.3932 0.39814 32.655 8.7816
0.2200 2758.6 BUB PT
1.3091 0.39015 32.523 8.9892
0.2400 2802.4 BUB PT
1.2269 0.38208 32.387 9.2023
0.2600 2846.5 BUB PT
1.1467 0.37394 32.246 9.4211
0.2800 2890.9 BUB PT
1.0685 0.36570 32.100 9.6459
0.3000 2935.7 BUB PT 0.99248
0.35737 31.949 9.8768
0.3200 2980.7 BUB PT
0.91864 0.34894 31.792 10.114
0.3400 3026.0 BUB PT
0.84711 0.34041 31.630 10.359
0.3600 3071.5 BUB PT
0.77797 0.33176 31.461 10.610
0.3800 3117.2 BUB PT
0.71132 0.32299 31.286 10.869
0.4000 3163.0 BUB PT
0.64724 0.31408 31.104 11.136
0.4200 3208.9 BUB PT
0.58584 0.30504 30.914 11.411
0.4400 3254.7 BUB PT
0.52719 0.29584 30.717 11.695
0.4600 3300.5 BUB PT
0.47139 0.28648 30.511 11.988
0.4800 3346.2 BUB PT
0.41851 0.27695 30.296 12.291
0.5000 3391.5 BUB PT
0.36864 0.26722 30.071 12.604
0.5200 3436.5 BUB PT
0.32185 0.25729 29.836 12.929
0.5400 3480.9 BUB PT
0.27822 0.24713 29.589 13.265
0.5600 3524.7 BUB PT
0.23780 0.23673 29.331 13.613
0.5800 3567.5 BUB PT
0.20065 0.22606 29.058 13.975
0.6000 3609.3 BUB PT
0.16681 0.21510 28.772 14.350
0.6200 3649.7 BUB PT
0.13631 0.20381 28.470 14.741
0.6400 3688.4 BUB PT
0.10915 0.19217 28.150 15.148
0.6600 3725.1 BUB PT
0.85316E-01 0.18014 27.812 15.573
0.6800 3759.3 BUB PT
0.64773E-01 0.16766 27.453 16.017
0.7000 3790.5 BUB PT
0.47448E-01 0.15468 27.070 16.481
0.7200 3818.2 BUB PT
0.33229E-01 0.14115 26.662 16.967
0.7400 3841.4 BUB PT
0.21963E-01 0.12699 26.225 17.478
0.7600 3859.4 BUB PT
0.13438E-01 0.11209 25.754 18.015
0.7800 3871.0 BUB PT
0.73849E-02 0.96353E-01 25.247 18.582
0.8000
3874.8
BUB PT 0.34619E-02 0.79629E-01 24.696 19.182
0.8200 3869.0 BUB PT
0.12545E-02 0.61733E-01 24.095 19.819
0.8400 3851.3 BUB PT
0.28009E-03 0.42423E-01 23.434 20.498
0.8600 3818.7 BUB PT
0.18015E-04 0.21372E-01 22.702 21.226
0.8800 3766.9 DEW PT
0.10763E-08 0.18812E-02 22.010 21.881
0.9000 3690.3 DEW PT
0.52509E-04 0.28018E-01 22.863 20.946
0.9200 3579.7 DEW PT
0.95858E-03 0.58116E-01 23.804 19.860
0.9400 3420.4 DEW PT
0.64384E-02 0.94063E-01 24.860 18.557
0.9600 3183.8 DEW PT
0.30324E-01 0.13974 26.090 16.901
0.9800 2794.8 DEW PT
0.13540 0.20605 27.638 14.514
1.0000 ** NO PSAT FOUND **
If we substitute CO2 for the specified injection
gas in the WAG flood, oil recovery is about the same (78% oil, -8% gas), but
90% of the injected CO2 is sequestered (remains in reservoir at end of
run). CO2 is more miscible with the oil than the originally specified
injection gas. The datafile is
spe5c.dat. The CO2-oil phase diagram is given in spe5c.out as:
INJECTANT
= CO2
RESERVOIR
FLUID
INJECTANT
---------------------------------
1 CO2 0.00000 1.000000
2 C1 0.500000 0.00000
3 C3 0.300000E-01 0.00000
4 C6 0.700000E-01 0.00000
5 C10 0.200000 0.00000
6 C15 0.150000 0.00000
7 C20 0.500000E-01 0.00000
Z PSAT TYPE TENSION DXY
DENO DENG
--------------------------------------------------------------------
0.0000 2302.9 BUB
PT 2.3187 0.47470 33.775 6.9619
0.0200 2296.9 BUB PT 2.2727 0.46371 33.852 7.2289
0.0400 2290.9 BUB PT 2.2251 0.45262 33.931 7.5006
0.0600 2285.0 BUB PT 2.1762 0.44143 34.011 7.7773
0.0800 2279.1 BUB PT 2.1258 0.43014 34.093 8.0592
0.1000 2273.3 BUB PT 2.0739 0.41876 34.176 8.3465
0.1200 2267.5 BUB PT 2.0207 0.40730 34.260 8.6394
0.1400 2261.8 BUB PT 1.9660 0.39575 34.346 8.9382
0.1600 2256.0 BUB PT 1.9099 0.38412 34.433 9.2432
0.1800 2250.4 BUB PT 1.8525 0.37242 34.522 9.5547
0.2000 2244.7 BUB PT 1.7937 0.36066 34.612 9.8729
0.2200 2239.1 BUB PT 1.7336 0.34884 34.703 10.198
0.2400 2233.5 BUB PT 1.6722 0.33697 34.796 10.531
0.2600 2228.0 BUB PT 1.6097 0.32505 34.890 10.872
0.2800 2222.5 BUB PT 1.5459 0.31310 34.985 11.220
0.3000 2217.0 BUB PT 1.4811 0.30111 35.081 11.578
0.3200 2211.5 BUB PT 1.4153 0.28911 35.178 11.945
0.3400 2206.0 BUB PT 1.3485 0.27710 35.276 12.321
0.3600 2200.5 BUB PT 1.2810 0.26508 35.375 12.707
0.3800 2195.0 BUB PT 1.2127 0.25308 35.474 13.105
0.4000 2189.5 BUB PT 1.1439 0.24109 35.573 13.513
0.4200 2184.0 BUB PT 1.0747 0.22914 35.673 13.934
0.4400 2178.5 BUB PT 1.0053 0.21723 35.772 14.368
0.4600 2172.9 BUB PT 0.93575 0.20538 35.871 14.816
0.4800 2167.3 BUB PT 0.86641 0.19360 35.968 15.278
0.5000 2161.7 BUB PT 0.79747 0.18191 36.064 15.756
0.5200 2155.9 BUB PT 0.72917 0.17032 36.157 16.251
0.5400 2150.1 BUB PT 0.66179 0.15885 36.247 16.764
0.5600 2144.2 BUB PT 0.59564 0.14751 36.333 17.296
0.5800 2138.2 BUB PT 0.53105 0.13633 36.414 17.849
0.6000 2132.1 BUB PT 0.46837 0.12533 36.488 18.425
0.6200 2125.8 BUB PT 0.40798 0.11452 36.553 19.026
0.6400 2119.3 BUB PT 0.35028 0.10394 36.608 19.654
0.6600 2112.6 BUB PT 0.29569 0.93598E-01 36.651 20.311
0.6800 2105.7 BUB PT 0.24464 0.83528E-01 36.677 21.002
0.7000 2098.5 BUB PT 0.19756 0.73758E-01 36.683 21.728
0.7200 2091.0 BUB PT 0.15489 0.64318E-01 36.665 22.494
0.7400 2083.1 BUB PT 0.11703 0.55242E-01 36.617 23.306
0.7600 2074.8 BUB PT 0.84336E-01 0.46567E-01 36.531 24.170
0.7800 2066.1 BUB PT 0.57099E-01 0.42918E-01 36.398 25.092
0.8000 2056.7 BUB PT 0.35479E-01 0.39515E-01 36.205 26.082
0.8200 2046.7 BUB PT 0.19461E-01 0.35258E-01 35.937 27.153
0.8400 2035.7 BUB PT 0.87769E-02 0.29965E-01 35.571 28.319
0.8600 2023.6 BUB PT 0.27959E-02 0.23370E-01 35.080 29.599
0.8800 2009.8 BUB PT 0.41152E-03 0.15060E-01 34.421 31.017
0.9000 1993.5 BUB PT 0.23791E-05 0.43385E-02 33.536 32.600
0.9200 1973.0 DEW PT 0.56154E-04 0.10070E-01 34.366 32.333
0.9400 1944.5 DEW PT 0.37147E-02 0.30693E-01 36.272 30.661
0.9600 1898.5 DEW PT 0.44451E-01 0.62689E-01 38.083 28.229
0.9800 1799.9 DEW PT 0.31364 0.11810 39.228 24.243
1.0000 ** NO PSAT FOUND **
The FCM pressure for the CO2/oil
mixture is only 2302 psia. Since the producing pressure 3000 is above
the FCM pressure, spe5c is a first-contact miscible wag flood.
If instead we first deplete the
reservoir for 20 years with bhp=1000 (recovery = 27.1% oil, 47.7% gas), then
waterflood (inject at 4500 psia, produce at 1000 psia) for another 20 years
(recovery = 60.2% oil, 76.1% gas), and then do the same original WAG flood
for another 20 years, the final recoveries are 74% oil, 39.1% gas. The data
file is spe5dwm.dat
So, when miscible flooding applies
and suitable gas is available, it is usually the best possible primary
recovery process. Depletion and waterflooding destroy the possibility
for very high miscible recovery because they eliminate the possibility for
uniform and high sweep efficiency.
Primary miscible or near-miscible
primary floods with horizontal wells could be the most efficient possible
production method for originally undersaturated oil reservoirs.
Gravity-stable vertical floods using horizontal wells might maximize
production efficiency. Primary miscible recovery eliminates the usual
depletion and waterflooding phases of recovery for an approximate order of
magnitude improvement in production efficiency. A prohibiting factor
is often availability of injection gas. Locating gas and power plants
close to major oilfields maximizes efficiency of the process. Beyond
gas availability, primary miscible recovery methods may not be applied to
qualifying reservoirs / fluids because of any combination of convention (of
primary depletion followed by (secondary) waterflooding followed by
(tertiary) EOR methods), corporate and investor policy, or regulation.
The above also applies to
liquid-rich and gas condensate unconventional systems.
Given the very high potential value
of the use of CO2 for (primary or EOR) miscible flooding, it makes no sense
to waste CO2 by storing it. Evidence of that is the inability of
anyone to answer our questions in the SPE CCUS Technical
Section.
1. Killough, J., and Kossack, C., "Fifth SPE Comparative Solution
Project: Evaluation of Miscible Flood Simulators", SPE 16000, presented at
the 9th SPE Symposium on Reservoir Simulation, San Antonio, TX, Feb. 1-4,
1987.
|